
¡°2023ÄêºÍг·ÖÎö×êÑлᣨÉϺ££©¡±ÓÚ2023Äê10ÔÂ14-15ÈÕÔÚУ±¾²¿GJ303A˳ÀûÕÙ¿ª¡£±¾´Î»áÒéÖ¼ÔÚΪ¹úÄÚºÍг·ÖÎöѧÕßÌṩһ¸öѧÊõ»¥»»Æ½Ì¨£¬ÍƽøºÍг·ÖÎö¼°ÆäÓйØÁìÓòµÄ·¢Õ¹£¬¼ÓÇ¿¹úÄÚ±íͬҵ֮¼äµÄ»¥¶©»¥»»ÓëºÏ×÷¡£À´×ÔÃÀ¹úÍþ˹¿µÐÁ´óѧÃܶûÎÖ»ù·ÖУ¡¢¸´µ©´óѧ¡¢±±¾©Ê¦·¶´óѧ¡¢ÖÐɽ´óѧ¡¢Õã½´óѧ¡¢ÏÃÃÅ´óѧ¡¢»ªÖÐʦ·¶´óѧÌõÈ21Ëù¸ßУµÄ40ÓàÃûºÍг·ÖÎö¼°ÆäÓйØÁìÓòµÄ³ÛÃûר¼Ò²ÎÓëÁ˱¾´Î×êÑлᣬ´ó»á¹²ÓÐ14¸ö»ã±¨¡£»áÒéÓÉб¦GGÀíѧԺÊýѧϵÖ÷°ì¡£
»áÒéÓÚ14ÈÕÉÏÎç8:30¿ªÄ»£¬Ð±¦GGÀíѧԺµ³Î¯Êé¼ÇÊ¢Íò³É½ÌÊÚ´ú±íѧԺÖÂÓ½Ó´Ç£¬½éÉÜÁËб¦GGµÄ·¢Õ¹¹ý³Ì¡¢ÀíѧԺµÄ¸ù»ùÇé¿öºÍÊýѧѧ¿Æ½üЩÄêµÄ·¢Õ¹Çé¿ö¡£±±¾©Ê¦·¶´óѧ¶¡Ó½ÌÊÚºÍÃÀ¹úÍþ˹¿µÐÁ´óѧÃܶûÎÖ»ù·ÖУ·¶´óɽ½ÌÊÚ×÷Ϊ¼Î±öÖ´ǡ£ÀíѧԺÊýѧϵµ³×ÜÖ§Êé¼ÇÕÔ·¢ÓѽÌÊÚÖ÷³Ö¿ªÄ»Ê½¡£

14ÈÕÉÏÎ磬ÃÀ¹úÍþ˹¿µÐÁ´óѧÃܶûÎÖ»ù·ÖУ·¶´óɽ½ÌÊÚ×÷ÁËÌâΪ¡°Estimates of a maximal oscillatory integral on compact manifolds¡±µÄ»ã±¨£»ÏÃÃÅ´óѧÎé»ðÐܽÌÊÚ×÷ÁËÌâΪ¡°From Fourier expansions to rough singular integrals¡±µÄ»ã±¨; ±±¾©Ê¦·¶´óѧѦÇìÓª½ÌÊÚ×÷ÁËÌâΪ¡°´Ö²ÚºËËã×ÓµÄÈõ¼«ÏÞÐÐΪÎÊÌâºÍ¶þ¸ö¿Ì»¡±µÄ»ã±¨¡£

14ÈÕÏÂÎ磬»ªÖÐʦ·¶´óѧҢÓ×»ª½ÌÊÚ×÷ÁËÌâΪ¡°On the Lp bounds of Fourth order wave operators on R^3¡±µÄ»ã±¨£»ÏæÌ¶´óѧÁú˳³±½ÌÊÚ×÷ÁËÌâΪ¡°On the estimate of operator for 0<p<infty¡±µÄ»ã±¨£»»ªÖÐʦ·¶´óѧµËÇåȪ¸±½ÌÊÚ×÷ÁËÌâΪ¡°The modified scattering for cubic NLS with double-well potential in dimension one¡±µÄ»ã±¨£»±±¾©ÁÖÒµ´óѧÕ¾ê½ÌÔ±×÷ÁËÌâΪ¡°Riesz transforms associated with the Neuman Laplacian¡±µÄ»ã±¨¡£

15ÈÕÉÏÎ磬ÉϺ£Ê¦·¶´óѧÀîÖп½ÌÊÚ×÷ÁËÌâΪ¡°Operators on the Bergman spaces associated with a class of generalized analytic functions¡±µÄ»ã±¨£»ÖÐɽ´óѧ³ÂÏéºê¸±½ÌÊÚ×÷ÁËÌâΪ¡°Some spacetime estimates for the semiperiodic Schrodinger equation¡±µÄ»ã±¨£»¼ÎÐËѧԺÀ¶É»ª½ÌÊÚ×÷ÁËÌâΪ¡°ÆÚȨ¶¨¼ÛÖеÄFourier²½Ö衱µÄ»ã±¨¡£

15ÈÕÏÂÎ磬Õã½´óѧÍõÃνÌÊÚ×÷ÁËÌâΪ¡°The rate of convergence on Schrodinger operator¡±µÄ»ã±¨£»¸´µ©´óѧºØÍ¼»¸±½ÌÊÚ×÷ÁËÌâΪ¡°On multilinear multipliers¡±µÄѧÊõ»ã±¨£»Õã½Ê¦·¶´óѧÕÔ¿¡Ñà½ÌÔ±×÷ÁËÌâΪ¡°Hardy space estimate of the maximal wave operator¡±µÄ»ã±¨£»Ð±¦GGÏî³Ð껲©Ê¿×÷ÁËÌâΪ¡°Sharp constants for fractional Hardy-Littlewood maximal operators on finite graphs¡±µÄ»ã±¨¡£

Õâ´Î»áÒéµÄ»ã±¨ÄÚÈݽÔΪºÍг·ÖÎö¼°ÆäÓйØÁìÓòÖеÄÒ»Ð©Ç°ÑØÎÊÌâÒÔ¼°·¢Õ¹Ç÷Ïò£¬Óë»áר¼Ò¡¢Ñ§Õß¾ÍÆäÖеÄÎÊÌâ·¢Õ¹»áÉÌÈÈÁÒ£¬Ñ§Êõ·ÕΧŨÃÜ£¬ÊµÏÖÁËÕâ´Î»áÒéÍÆ½øÑ§Êõ»¥»»¡¢°Ù¼ÒÕùÃùµÄ×ÚÖ¼¡£Õâ´Î»áÒéµÄ˳ÀûÕÙ¿ª¶ÔÓÚ¼ÓÇ¿ºÍг·ÖÎö¼°ÀûÓ÷½ÃæµÄѧÊõ»¥»»ÓëºÏ×÷Æðµ½ÁË»ý¼«µÄ×÷Óã¬Í¬Ê±Ò²ÌáÉýÁËб¦GGÊýѧѧ¿ÆµÄÓ°ÏìÁ¦¡£