ÀëÉ¢·½³ÌµÄÔ¼»¯II

2022.09.07

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

¹¦·ò£º 2022Äê09ÔÂ08ÈÕ 09:00

µØÖ·£º Zoom»áÒé

»ã±¨±êÌâ (Title)£ºReduction of lattice equations: Lecture II (ÀëÉ¢·½³ÌµÄÔ¼»¯II)

»ã±¨ÈË (Speaker)£º Peter van der Kamp ½ÌÊÚ£¨La Trobe University, Australia£©

»ã±¨¹¦·ò (Time)£º2022Äê09ÔÂ08ÈÕ(ÖÜËÄ) 09:00-10:00

»ã±¨µØÖ· (Place)£ºZoom»áÒ飨ID£º882 4175 6007£©

Ô¼ÇëÈË(Inviter)£ºÕÅÐÛʦ

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£º

Lecture 2 Topics: Periodic reductions, Monodromy matrix

Narrative: By defining periodic initial conditions on a standard staircase, a lattice equation (P¦¤E) reduces to a mapping (O¦¤E). The Lax pair for the P¦¤E gives rise to a Lax pair for the O¦¤E, whose monodromy matrix can be used to construct integrals for the O¦¤E.

Reference: O. Rojas, P.H. van der Kamp and G.R.W. Quispel, Lax representation for integrable O?Es, proceedings ¡®Symmetry and Perturbation Theory 2007¡¯ (2007) 271-272.


¡¾ÍøÕ¾µØÍ¼¡¿