ÀëÉ¢·½³ÌµÄÔ¼»¯IV

2022.09.27

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

¹¦·ò£º 2022Äê09ÔÂ28ÈÕ 10:00

µØÖ·£º Zoom»áÒé

»ã±¨±êÌâ (Title)£ºReduction of lattice equations: Lecture IV (ÀëÉ¢·½³ÌµÄÔ¼»¯IV)

»ã±¨ÈË (Speaker)£º Peter van der Kamp ½ÌÊÚ£¨La Trobe University, Australia£©

»ã±¨¹¦·ò (Time)£º2022Äê09ÔÂ28ÈÕ(ÖÜÈý) 10:00-11:00

»ã±¨µØÖ· (Place)£ºZoom»áÒ飨ID£º882 4175 6007£©

Ô¼ÇëÈË(Inviter)£ºÕÅÐÛʦ

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£º

Lecture 4 Topics: Boundary reductions

Narrative: This is a continuation of Lecture 3: I will focus more on discrete traveling wave reduction of P¦¤E. I will also introduce open boundary reductions and involution curves.

References: V. Caudrelier, P.H. van der Kamp, C. Zhang, Integrable boundary conditions for quad equations, open boundary reductions and integrable mappings, Int. Math. Res. Not. 00, No. 0, pp. 1¨C44, https://doi.org/10.1093/imrn/rnab188.

P.H. van der Kamp, A new class of integrable maps of the plane: Manin transformations with involution curves, SIGMA 17 (2021), 067, 14 pages.

¡¾ÍøÕ¾µØÍ¼¡¿