»ã±¨±êÌâ (Title)£ºA Parallel-in-Time Algorithm for High-Order BDF Discretization for Diffusion and Subdiffusion Equations (À©É¢ÓëÑÇÀ©É¢·½³Ì¸ß½×Ïòºó²î·ÖÌåʽµÄ¹¦·ò²¢ÐÐËã·¨)
»ã±¨ÈË (Speaker)£º ÖÜÖª ÖúÀí½ÌÊÚ£¨Ïã¸ÛÀí¹¤´óѧ£©
»ã±¨¹¦·ò (Time)£º2022Äê9ÔÂ7ÈÕ(ÖÜÈý) 15:00-17:00
»ã±¨µØÖ· (Place)£ºÏßÉÏÌÚѶ»áÒé £¨»áÒé ID£º420 828 754£©
Ô¼ÇëÈË(Inviter)£ºÀƷ¡¢²ÌÃô
Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ
»ã±¨ÌáÒª£ºIn this talk, I will present a parallel-in-time algorithm for approximately solving parabolic equations. We apply the k-step backward differentiation formula, and then develop an iterative solver by using the waveform relaxation technique. Each resulting iterate represents a periodic-like system, which could be further solved in parallel by using the diagonalization technique. The convergence of the waveform relaxation iteration is theoretically examined by using the generating function method. The argument could be further applied to the time-fractional subdiffusion equation, whose discretization shares common properties of the standard BDF methods, because of the nonlocality of the fractional differential operator. Some illustrative numerical results will be presented to complement the theoretical analysis.
»ã±¨È˼ò½é£º ÖÜÖª£¬Ïã¸ÛÀí¹¤´óѧÀûÓÃÊýѧϵÖúÀí½ÌÊÚ¡£ÓÚ2015Äê±ÏÒµÓÚÃÀ¹úµÂÖÝÅ©¹¤´óѧ(Texas A&M University)Êýѧϵ£¬»ñ²©Ê¿Ñ§Î»¡£2015Äê-2017ÄêÈÎÃÀ¹ú¸çÂ×±ÈÑÇ´óѧÀûÓÃÎïÀíÓëÀûÓÃÊýѧϵ²©Ê¿ºó¡£×êÑз½ÏòÖØÒªÔ̺¬Î¢·Ö·½³ÌµÄÊýÖµ½¨Ä£¡¢·ÂÕպͷÖÎö¡£ÖÁ½ñÒÑÔÚSIAM Journal on Numerical Analysis¡¢SIAM Journal on Control and Optimization¡¢Journal of Scientific ComputingµÈ¹ú¼Ê³ÛÃûÆÚ¿¯°ä·¢Ñ§ÊõÂÛÎÄ40ÓàÆª¡£