ÍÖÔ²·½³ÌÖðµã¸ú×Ù×îÓŽÚÔìÎÊÌâµÄ×ÔÊÊÓ¦HGD²½Öè

2023.04.28

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£ºAn adaptive HGD method for the pointwise tracking optimal control problem of elliptic equations (ÍÖÔ²·½³ÌÖðµã¸ú×Ù×îÓŽÚÔìÎÊÌâµÄ×ÔÊÊÓ¦HGD²½Öè)

»ã±¨ÈË (Speaker)£º³ÂÑÞÆ¼ ½ÌÊÚ£¨»ªÄÏʦ·¶´óѧ£©

»ã±¨¹¦·ò (Time)£º2023Äê5ÔÂ11ÈÕ(ÖÜËÄ) 10£º30-11£º30

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿F309

Ô¼ÇëÈË(Inviter)£ºÀƷ¡¢²ÌÃô

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºIn this talk, we study an optimal control problem with point values of state in the objective functional. The state and adjoint state are approximated by a hybridized discontinuous Galerkin (HDG) method, and the control is discretized by the variational discretization concept. With the help of the error estimates of Green¡¯s function and Oswald interpolation, reliable and efficient a posteriori error estimates for the errors in the control, state and adjoint state variables are obtained. Several numerical examples are provided to show the performance of the obtained a posteriori error estimators.

¡¾ÍøÕ¾µØÍ¼¡¿