AuslanderÐÍǰÌáºÍÈõGorenstein´úÊý

2023.06.05

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£ºAuslander-type Conditions and Weakly Gorenstein Algebras£¨AuslanderÐÍǰÌáºÍÈõGorenstein´úÊý£©

»ã±¨ÈË (Speaker)£º»ÆÕ×Ó¾½ÌÊÚ£¨ÄϾ©´óѧ£©

»ã±¨¹¦·ò (Time)£º2023Äê6ÔÂ9ÈÕ(ÖÜÎå) 15:00-15:50

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿F309

Ô¼ÇëÈË(Inviter)£º¸ßéª

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºLet R be an Artin algebra. Auslander and Reiten conjectured that R is Gorenstein if R satisfies the Auslander condition. We prove that if R is left quasi Auslander, then R is Gorenstein if and only if it is (left and) right weakly Gorenstein, and that if R satisfies the Auslander condition, then R is Gorenstein if and only if it is left or right weakly Gorenstein. This is a reduction of the above conjecture.

¡¾ÍøÕ¾µØÍ¼¡¿