»ã±¨±êÌâ (Title)£ºAuslander-type Conditions and Weakly Gorenstein Algebras£¨AuslanderÐÍǰÌáºÍÈõGorenstein´úÊý£©
»ã±¨ÈË (Speaker)£º»ÆÕ×Ó¾½ÌÊÚ£¨ÄϾ©´óѧ£©
»ã±¨¹¦·ò (Time)£º2023Äê6ÔÂ9ÈÕ(ÖÜÎå) 15:00-15:50
»ã±¨µØÖ· (Place)£ºÐ£±¾²¿F309
Ô¼ÇëÈË(Inviter)£º¸ßéª
Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ
»ã±¨ÌáÒª£ºLet R be an Artin algebra. Auslander and Reiten conjectured that R is Gorenstein if R satisfies the Auslander condition. We prove that if R is left quasi Auslander, then R is Gorenstein if and only if it is (left and) right weakly Gorenstein, and that if R satisfies the Auslander condition, then R is Gorenstein if and only if it is left or right weakly Gorenstein. This is a reduction of the above conjecture.