Deligne-LusztigÌØµã±êµÄGan-Gross-PrasadÎÊÌâºÍ0Éî¶È³¬¼â°µÊ¾µÄ½µÂä

2023.09.27

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£ºGan-Gross-Prasad problems for Deligne-Lusztig characters and local descent for depth zero representations£¨Deligne-LusztigÌØµã±êµÄGan-Gross-PrasadÎÊÌâºÍ0Éî¶È³¬¼â°µÊ¾µÄ½µÂ䣩

»ã±¨ÈË (Speaker)£ºÂí¼Ò¿¥ ¸±½ÌÊÚ (ÏÃÃÅ´óѧ)

»ã±¨¹¦·ò (Time)£º2023Äê09ÔÂ27ÈÕ(ÖÜÈý) 10:30-11:30

»ã±¨µØÖ· (Place)£ºÌÚѶ»áÒé716-821-354 (ÎÞÃÜÂë)

Ô¼ÇëÈË(Inviter)£ººÎº£°²

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºThis talk will present a joint work with Dongwen Liu and Fang Shi. We will first recall the basic setting of the Gan-Gross-Prasad conjecture. Then, we delve into the finite field case and will explain how to reduce the GGP problem into combinatoric problems for the Deligne-Lusztig characters following Reeder's approach. In the end, we will present an application to the p-adic group setting where we determined the local descent to a unitary group of depth-zero supercuspidal representations of the general linear group. These are concrete examples of the Langlands' functorality.

¡¾ÍøÕ¾µØÍ¼¡¿