¡°·¢É¢¡±RamanujanÐͳ¬Í¬ÓàµÄÒ»¸öеÄq-·ÂÕÕ

2023.10.30

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£º¡°·¢É¢¡±RamanujanÐͳ¬Í¬ÓàµÄÒ»¸öеÄq-·ÂÕÕ£¨A new q-analogue of a ``divergent" Ramanujan-type supercongruence£©

»ã±¨ÈË (Speaker)£º ¹ù¾üΰ ½ÌÊÚ£¨»´Òõʦ·¶Ñ§Ôº£©

»ã±¨¹¦·ò (Time)£º2023Äê11ÔÂ1ÈÕ(ÖÜÈý) 15:00¡ª16:00

»ã±¨µØÖ·£ºÐ£±¾²¿F309

Ô¼ÇëÈË(Inviter)£ºÍõÏþϼ

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºGuillera and Zudilin proved the following ``divergent" Ramanujan- type supercongruence: for any odd prime p, \sum_{k=0}^{p-1} \frac{(\frac{1}{2})_k^3}{k!^3}(3k+1)2^{2k} \equiv p\pmod{p^3}. Sun further conjectured that the above supercongruence is also true modulo p^4 for p>3, and a q-analogue of this result was given by the author in an early paper. In this paper, we establish a new q-analogue of Sun's supercongruence by employing the method of ``creative microscoping", developed by the author and Zudilin in 2019.

¡¾ÍøÕ¾µØÍ¼¡¿