¼«´óº¯ÊýÆ×³Ë×ÓµÄÓнçÐÔ

2024.09.27

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£º¼«´óº¯ÊýÆ×³Ë×ÓµÄÓнçÐÔ

»ã±¨ÈË (Speaker)£º³ÂÅô ½ÌÊÚ£¨ÖÐɽ´óѧ£©

»ã±¨¹¦·ò (Time)£º2024Äê9ÔÂ29ÈÕ£¨ÖÜÈÕ£©10:30

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿ GJ403

Ô¼ÇëÈË(Inviter)£ºÕÔ·¢ÓÑ

Ö÷°ì²¿ÃÅ£ºÀíѧԺ Êýѧϵ

»ã±¨ÌáÒª£ºLet $(X,d,\mu)$ be a metric space with doubling measure and $L$ be a nonnegative self-adjoint operator on $L^2(X)$ whose heat kernel satisfies Gaussian upper bound. Given Hormander type spectral multipliers $m_i,1\leq i\leq N$ with uniform estimates, we prove an optimal $\sqrt{\log(1+N)}$ bound in $L^p$ for the maximal function $\sup_{1\leq i\leq N}|m_i(L)f|$ by making use of Doob transform and some techniques as in Grafakos-Honzik-Seeger to use the ${\rm exp}(L^2)$ estimate by Chang-Wilson-Wolff. Based on this, we establish sufficient conditions on the bounded Borel function $m$ such that the maximal function $ M_{m,L}$ given by $M_{m,L}f(x) = \sup_{t>0} |m(tL)f(x)|$ is bounded on $L^p$. The applications include Scattering operators, Schrodinger operators with inverse square potential, Dirichlet Laplacian with Dirichlet boundary, Bessel operators and Laplace-Beltrami operators.

¡¾ÍøÕ¾µØÍ¼¡¿