Á½¸ö¹¦·ò³ß¶ÈµÄÖÐÁ¢ÐÍËæ»ú·ºº¯Î¢·Ö·½³ÌµÄÇ¿ÊÕÁ²ÐÔ

2024.10.11

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£º Strong Convergence of Neutral Stochastic Functional Differential Equations with Two Time-Scales£¨Á½¸ö¹¦·ò³ß¶ÈµÄÖÐÁ¢ÐÍËæ»ú·ºº¯Î¢·Ö·½³ÌµÄÇ¿ÊÕÁ²ÐÔ£©

»ã±¨ÈË (Speaker)£ºÔ¬³É¹ð ½ÌÊÚ£¨Ó¢¹ú˹ÍúÎ÷´óѧSwansea University£©

»ã±¨¹¦·ò (Time)£º2024Äê10ÔÂ17ÈÕ (ÖÜËÄ) 14:00

»ã±¨µØÖ· (Place)£ºÌÚѶ»áÒ飺661-860-447 »áÒéÃÜÂ룺123456

Ô¼ÇëÈË(Inviter)£ºÑô·Ò·Ò

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£º

This talk is to discuss the strong convergence of neutral stochastic

functional differential equations (NSFDEs) with two time-scales. The existence and uniqueness of invariant measure of the fast component is proved by using Wasserstein distance and the stability-in-distribution argument. The strong convergence between the slow component and the averaged component is also obtained by the the averaging principle in the spirit of Khasminskii's approach.

¡¾ÍøÕ¾µØÍ¼¡¿