Á¿×ÓÏà±äµÄÍØÆËÐÔÖÊ

2024.10.25

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£ºÁ¿×ÓÏà±äµÄÍØÆËÐÔÖÊ£¨Topological properties of quantum phase transitions£©

»ã±¨ÈË (Speaker)£ºÓàÑ©¼Ñ ½ÌÊÚ£¨¸£ÖÝ´óѧ£©

»ã±¨¹¦·ò (Time)£º2024Äê10ÔÂ29ÈÕ(Öܶþ) 14:30

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿G601

Ô¼ÇëÈË(Inviter)£ºÖÓ½¨ÐÂ

Ö÷°ì²¿ÃÅ£ºÁ¿×ӿƼ¼×êÑÐÔº£¬ÀíѧԺÎïÀíϵ

»ã±¨ÌáÒª£ºOver the past decade, significant efforts have been devoted to describing and classifying interacting gapped topological phases. However, investigations into interacting gapless topological phases remain very rare. In this talk, I will take a 1+1D exactly solvable model¡ªthe cluster Ising model¡ªas an example, combined with my series of work in this newly emerging field, to explain the basic concepts and properties of gapless symmetry-protected topological phases.

[1] Xue-Jia Yu, et al., Phys. Rev. Lett. 129, 210601 (2022); [2] Xue-Jia Yu, et al., Phys. Rev. Lett, 133. 026601 (2024); [3] Xue-Jia Yu, and Wei-Lin Li, Phys. Rev. B, 110.045119 (2024); [4] Wen-Hao Zhong, et al., Phys. Rev. A, 110, 022212 (2024); Hao-Long Zhang, et al., Phys. Rev. A. 109,062226 (2024)

¡¾ÍøÕ¾µØÍ¼¡¿