¶þÔª Hermite ¶àÏîʽ

2025.01.06

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£º¶þÔª Hermite ¶àÏîʽ

»ã±¨ÈË (Speaker)£º ÁõÖιú ½ÌÊÚ£¨»ª¶«Ê¦·¶´óѧ£©

»ã±¨¹¦·ò (Time)£º2025Äê01ÔÂ10ÈÕ(ÖÜÎå) 09£º00

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿GJ303

Ô¼ÇëÈË(Inviter)£º³Âµ©µ©

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºThe Hermite polynomials are one of the classic orthogonal polynomials. In this talk I will introduce the concepts of the bivariate Hermite polynomials and Hermite series and prove an expansion theorem for the analytic function in several variables by using the method of partial differential equations. With this expansion theorem, we can recover the Mehler formula, the Nielsen formula and the Weisner formula for the Hermite polynomials easily.

¡¾ÍøÕ¾µØÍ¼¡¿