»ùÓÚ¾­Ñé²åÖµ·¨µÄÐÂÐÍÓÐÀí±Æ½üËã·¨

2025.04.18

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£ºA New Rational Approximation Algorithm via the Empirical Interpolation Method£¨»ùÓÚ¾­Ñé²åÖµ·¨µÄÐÂÐÍÓÐÀí±Æ½üËã·¨£©

»ã±¨ÈË (Speaker)£ºÀîÓêÎÄ ×êÑÐÔ± £¨Õã½­´óѧ£©

»ã±¨¹¦·ò (Time)£º2025Äê4ÔÂ19ÈÕ (ÖÜÁù) 9:45

»ã±¨µØÖ· (Place)£ºÐ£±¾²¿GJ303

Ô¼ÇëÈË(Inviter)£º¼ÍÀö½à

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

ÌáÒª£ºIn this talk, I will present a rational approximation algorithm via the empirical interpolation method for interpolating a family of parametrized functions to rational polynomials with invariant poles, leading to efficient numerical algorithms for space-fractional differential equations, parameter-robust preconditioning, and evaluation of matrix functions. Compared to classical rational approximation algorithms, the proposed method is more efficient for approximating a large number of target functions. In addition, I will give a convergence estimate of the rational approximation algorithm using the metric entropy numbers.

¡¾ÍøÕ¾µØÍ¼¡¿