Èýά²»¹æ¶¨±íÓòÆæÈŶ¯¶ÔÁ÷À©É¢·´Ó³ÎÊÌâµÄ¸ßЧÆ×·¨

2025.11.12

Ͷ¸å£ºÉÛ·Ü·Ò²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£ºAn Efficient Spectral Method for Singularly Perturbed Convection-Diffusion-Reaction Problems in Three-Dimensional Irregular Exterior Domains£¨Èýά²»¹æ¶¨±íÓòÆæÈŶ¯¶ÔÁ÷À©É¢·´Ó³ÎÊÌâµÄ¸ßЧÆ×·¨)

»ã±¨ÈË (Speaker)£ºÍõÖÐÇì ½ÌÊÚ£¨ÉϺ£Àí¹¤´óѧ£©

»ã±¨¹¦·ò (Time)£º2025Äê11ÔÂ13ÈÕ£¨ÖÜËÄ£©9:00

»ã±¨µØÖ· (Place)£ºÌÚѶ»áÒé 938-559-552

Ô¼ÇëÈË(Inviter)£ºÖìÅå³É

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£º

This paper presents an efficient Fourier - Legendre - Jacobi rational spectral method , based on mapping techniques , for solving singularly perturbed convection - diffusion - reaction problems in a three - dimensional exterior domain with a complex obstacle . The solutions exhibit bound - ary or interior layer behavior as e ¡ú0. The method begins by applying a spherical coordinate transformation to map the exterior domain of the complex obstacle onto the exterior of a unit sphere , while simultaneously transforming the convection - diffusion - reaction equation . The transformed equation is then formulated in its weak form , and a Fourier - Legendre - Jacobi rational spectral scheme is introduced . The paper provides a detailed description of the numerical implementation and analyzes the convergence of the solution in the H - norm . Numerical results demonstrate that the proposed method achieves high - order accuracy .

¡¾ÍøÕ¾µØÍ¼¡¿