»ã±¨Ö÷Ì⣺ÓÐÏÞȺÓë²»³ÉÔ¼µ¥ÏîÌØµã±êµÄ´ÎÊý
»ã±¨ÈË£ºÂ¬¼Ò¿í ½ÌÊÚ £¨¹ãÎ÷ʦ·¶´óѧ£©
»ã±¨¹¦·ò£º2018Äê5ÔÂ26ÈÕ£¨ÖÜÁù£©10:30
»ã±¨µØÖ·£ºÐ£±¾²¿G507
Ô¼ÇëÈË£º¹ùÐãÔÆ
Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ
»ã±¨ÌáÒª£ºLet G be a finite group. A irreducible character of G is monomial if it is induced from a linear character of some subgroup of G. In this short note, we introduce some conditions for a finite solvable group G to be p-nilpotent or p-closed in terms of irreducible monomial characters
Ó½ÓÀÏʦ¡¢Ñ§Éú²ÎÓë £¡