³¬Í¼µÄÁÚ½Ó»òÎÞ·ûºÅÀ­ÆÕÀ­Ë¹ÕÅÁ¿×îÓ×H-ÌØµãÖµµÄÉ㶯

2020.10.26

Ͷ¸å£º¹¨»ÝÓ¢²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

¹¦·ò£º 2020Äê10ÔÂ29ÈÕ 09:00

µØÖ·£º ÌÚѶ »áÒé

»ã±¨Ö÷Ì⣺³¬Í¼µÄÁÚ½Ó»òÎÞ·ûºÅÀ­ÆÕÀ­Ë¹ÕÅÁ¿×îÓ×H-ÌØµãÖµµÄÉ㶯

»ã±¨ÈË£º·¶ÒæÕþ ½ÌÊÚ £¨°²»Õ´óѧ£©

»ã±¨¹¦·ò£º2020Äê10ÔÂ29ÈÕ£¨ÖÜËÄ£© 9:00

²Î»á·½Ê½£ºÌÚѶ »áÒé

»áÒéID£º728 657 829

Ö÷°ì²¿ÃÅ£ºÀíѧԺÊýѧϵ

»ã±¨ÌáÒª£ºLet G be an even uniform connected hypergraph with cut vertices. Then G is the coalescence of two connected sub-hypergraphs both called the branches of G.. Let A(G), Q(G) be the adjacency tensor and signless Laplacian tensor of G respectively. The least H-eigenvalue of A(G) or Q(G) refers the least real eigenvalue of A(G) or Q(G) associated with real eigenvectors. We study how the least H-eigenvalue of A(G) or Q(G) perturbs when one branch is relocated from one vertex to another vertex, and generalize some results for simple graphs.

 

Ó­½ÓÀÏʦ¡¢Ñ§Éú²ÎÓ룡

¡¾ÍøÕ¾µØÍ¼¡¿