»úе½ø½¨ºÍÀíÂÛ¾­¼ÃѧÖеÄË«²ã¹æ»®ÀûÓÃ

2021.03.30

Ͷ¸å£ºÉò½à²¿ÃÅ£ºÖÎÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

¹¦·ò£º 2021Äê03ÔÂ30ÈÕ 14:30

µØÖ·£º б¦GGУ±¾²¿¶«Çø1ºÅÂ¥ÖÎÀíѧԺ467ÊÒ

 

±êÌ⣺»úе½ø½¨ºÍÀíÂÛ¾­¼ÃѧÖеÄË«²ã¹æ»®ÀûÓÃ

Ñݽ²ÈË£ºÕŽø²©Ê¿£¬ÄÏ·½¿Æ¼¼´óѧ

Ö÷³ÖÈË£ºÖìÏ£µÂ²©Ê¿£¬Ð±¦GGÖÎÀíѧԺ

¹¦·ò£º2021Äê3ÔÂ30ÈÕ£¬ÏÂÎç14:30

µØÖ·£ºÐ±¦GGУ±¾²¿¶«Çø1ºÅÂ¥ÖÎÀíѧԺ467ÊÒ

Ö÷°ìµ¥Ôª£ºÐ±¦GGÖÎÀíѧԺ¡¢Ð±¦GGÖÎÀíѧԺÇàÀÏ´óʦÁªÒê»á

 

Ñݽ²È˼ò½é£º

    ÕŽø²©Ê¿±¾¿ÆË¶Ê¿¾ù±ÏÒµÓÚ´óÁ¬Àí¹¤´óѧ£¬²©Ê¿±ÏÒµÓÚ¼ÓÄôóά¶àÀûÑÇ´óѧ ¡£2015ÖÁ2018Äê¼äÈÎÖ°ÓÚÏã¸Û½þ»á´óѧ£¬2019ËêÊײÎÓëÄÏ·½¿Æ¼¼´óѧ ¡£ÕŽø²©Ê¿Ò»ÏòÖÂÁ¦ÓÚÓÅ»¯ÀíÂÛºÍÀûÓÃ×êÑУ¬Ö÷³Ö¶àÏî¹ú¶È¼¶»ù½ðÏîÄ¿£¬´ú±íÐԳɾͰ䷢ÔÚMathematical Programming¡¢SIAM Journal on Optimization¡¢SIAM Journal on Numerical Analysis¡¢Journal of Machine Learning Research¡¢International Conference on Machine LearningµÅ×гÁÒªÓ°ÏìÁ¦µÄÔ˳ïÓÅ»¯¡¢»úе½ø½¨ÆÚ¿¯Óë»áÒéÉÏ ¡£ÕŽø²©Ê¿µÄ×êÑгɾͻñµÃ2020ÄêµÚÆß½ìÖйúÔ˳ïѧ»áÇàÄê¿Æ¼¼½±£¬ÈëÑ¡2021ÄêÉîÛÚÊÐÓÅÁ¼¿Æ¼¼´´ÐÂÈ˲ÅÔì¾ÍÓÅÁ¼ÇàÄê´òËã ¡£

 

Ñݽ²ÄÚÈݼò½é£º

In this talk, we will discuss some recent advances in the applications of Bi-Level Programming Problem (BLPP). First, we study a gradient-based bi-level optimization method for learning tasks. In particular, by formulating bi-level models from the optimistic viewpoint and aggregating hierarchical objective information, we establish Bi-level Descent Aggregation (BDA), a flexible and modularized algorithmic framework for BLPP. Extensive experiments justify our theoretical results and demonstrate the superiority of the proposed BDA for different tasks, including hyper-parameter optimization and meta learning. Second, we propose a sufficient condition in the form of a partial error bound condition which guarantees the partial calmness condition. Our main result states that the partial error bound condition for the combined programs based on B and FJ conditions are generic for an important setting with applications in economics and hence the partial calmness for the combined program is not a particularly stringent assumption. Moreover we derive optimality conditions for the combined program for the generic case without any extra constraint qualifications.

 

Ó­½Ó¿í´óʦÉú²ÎÓ룡


¡¾ÍøÕ¾µØÍ¼¡¿