¾í»ýÉñ¾­ÍøÂçµÄÉè¼Æ×¼Ôò

2021.06.30

Ͷ¸å£ºÖÜʱǿ²¿ÃÅ£ºÍÆËã»ú¹¤³ÌÓë¿ÆÑ§Ñ§Ôºä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

¹¦·ò£º 2021Äê06ÔÂ04ÈÕ 14:30

µØÖ·£º У±¾²¿¶«ÇøÍÆËã»úѧԺ´óÂ¥1106

±¨ ¸æ ÈË£ºÁÖÖæ³½ ½ÌÊÚ£¬±±¾©´óѧ

»ã±¨¹¦·ò£º7ÔÂ4ÈÕ£¨ÖÜÈÕ£©14:30

»ã±¨µØÖ·£ºÐ£±¾²¿¶«ÇøÍÆËã»úѧԺ´óÂ¥1106

Ñû Çë ÈË£ºÂíÀöÑÞ ¸±×êÑÐÔ± 

               

»ã±¨ÌáÒª£º

The design of convolutional neural networks (CNNs) has undergone two phases: manual design at the early stage, which requires much engineering insights, and the automatic search at the current stage, which heavily relies on computing power. Whether there is an underlying theory for designing good CNNs becomes a crucial research problem. In this talk, I will illustrate our efforts on pursuing this goal. Although I haven¡¯t found a unified principle that can result in all the effective CNNs, I do find multiple principles that can help design CNNs from various aspects. 


»ã±¨È˼ò½é:

ÁÖÖæ³½£¬±±¾©´óѧ½ÌÊÚ£¬IAPR/IEEE Fellow£¬¹ú¶È½ÜÇ࣬ÖйúͼÏóͼÐÎѧѧ»á»úеÊÓ¾õרί»áÖ÷ÈΣ¬Öйú×Ô¶¯»¯Ñ§»áģʽ¼ø±ðÓë»úеÖÇÄÜרί»á¸±Ö÷ÈΡ£×êÑÐÁìÓòΪ»úе½ø½¨¡¢ÍÆËã»úÊÓ¾õºÍÊýÖµÓÅ»¯¡£°ä·¢ÂÛÎÄ200ÓàÆª£¬Ó¢ÎÄ׍ָ2±¾¡£ÂŴε£ÈÎCVPR ¡¢ICCV¡¢NIPS/NeurIPS¡¢ICML¡¢IJCAI¡¢AAAIºÍICLRÁìÓòÖ÷ϯ£¬ÈÎICPR 2022¹²Í¬·¨Ê½Ö÷ϯ£¬ÔøÈÎIEEE T. PAMI±àί£¬ÏÖÈÎIJCV¡¢Optimization Methods and Software±àί¡£


¡¾ÍøÕ¾µØÍ¼¡¿