±¨ ¸æ ÈË£ºÀè·¼ ½ÌÊÚ£¬»ª¶«Ê¦·¶´óѧ
»ã±¨¹¦·ò£º12ÔÂ9ÈÕ£¨ÖÜËÄ£©10:00
»ã±¨µØÖ·£ºÌÚѶ»áÒ飨ID£º950 389 620£©
Ñû Çë ÈË£ºÂíÀöÑÞ ¸±×êÑÐÔ±
»ã±¨ÌáÒª£º
Magnetic Resonance Imaging (MRI) is a noninvasive diagnostic tool that provides excellent soft-tissue contrast. Image reconstruction from subsampled k-space data has been playing an essential role in fast MRI. We will talk about three methods for MRI reconstruction, including a variational method via non-convex weighted smoothly clipped absolute deviation prior and two iterative methods with deep CNN priors. Some experimental results are given to show the effectiveness of the proposed methods.
»ã±¨È˼ò½é:
Àè·¼£¬»ª¶«Ê¦·¶´óѧÊýѧ¿ÆÑ§Ñ§Ôº£¬½ÌÊÚ£¬²©Ê¿Éúµ¼Ê¦£¬ÖØÒª×êÑÐÐËÖÂÊÇ×êÑлùÓÚ±ä·Ö·¨¡¢Éî¶È½ø½¨µÈ²½ÖèµÄͼÏñ´¦Öá£ÔÚSIAM IMS£¬IEEE TIP¡¢ICCV, ECCVµÈ¹ú¼ÊÆÚ¿¯ºÍ»áÒéÉϰ䷢ÂÛÎÄ¶àÆª£¬googleÒýÓôÎÊýΪ1600Óà´Î¡£½üÄêÀ´Ö÷³ÖºÍ²Î¼ÓÁ˶àÏî¹ú¶ÈÌìÈ»¿ÆÑ§»ù½ðÏîÄ¿¡¢973ÏîÄ¿µÈ¡£